Knowledge Level Learning in Soar

نویسندگان

  • Paul S. Rosenbloom
  • John E. Laird
  • Allen Newell
چکیده

In this article we demonstrate how knowledge level learning can be performed within the Soar architecture. That is, we demonstrate how Soar can acquire new knowledge that is not deductively implied by its existing knowledge. This demonstration employs Soar's chunking mechanism — a mechanism which acquires new productions from goalbased experience — as its only learning mechanism. Chunking has previously been demonstrated to be a useful symbol level learning mechanism, able to speed up the performance of existing systems, but this is the first demonstration of its ability to perform knowledge level learning. Two simple declarative-memory tasks are employed for this demonstration: recognition and recall. This research was sponsored by the Defense Advanced Research Projects Agency (DOD) under contract N00039-86-C-0133 and by the Sloan Foundation. Computer facilities were partially provided by NIH grant RR-00785 to Sumex-Aim. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the US Government, the Sloan Foundation, or the National Institutes of Health. Knowledge Level Learning in Soar Page 1 of 13 Knowledge Level Learning in Soar

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Level Learning in Soar1

In this article we demonstrate how knowledge level learning can be performed within the Soar architecture. That is, we demonstrate how Soar can acquire new knowledge that is not deductively implied by its existing knowledge. This demonstration employs Soar’s chunking mechanism a mechanism which acquires new productions from goal-baaed experience as its only learning mechanism. Chunking has prev...

متن کامل

Modeling Bottom-Up Learning from Activity in Soar

This paper presents an implementation of bottom-up learning in a cognitive model. The paper relates the learning mechanism, its implementation in a Soar agent, and an experiment where the agent learns to solve an example task. The agent first learns primary schemas (low-level patterns of behavior) and then secondary schemas (patterns of primary schemas). This implementation draws from theories ...

متن کامل

Knowledge Level and Inductive Uses of Chunking (EBL)

When explanation-based learning (EBL) is used for knowledge level learning (KLL), training examples are essential, and EBL is not simply reducible to partial evaluation. A key enabling factor in this behavior is the use of domain theories in which not every element is believed a priori. When used with such domain theories EBL provides a basis for rote learning (deductive KLL) and induction from...

متن کامل

CYPRESS-Soar: A Case Study in Search and Learning in Algorithm Design

This paper describes a partial reimplementation of Doug Smith's CYPRESS algorithm design system within the Soar problem-solving architecture. The system, CYPRESS-SOAR, reproduces most of CYPRESS' behavior in the synthesis of three divide-and-conquer sorting algorithms from formal specifications. CYPRESS-Soar is based on heuristic search of problem spaces, and uses search to compensate for missi...

متن کامل

The Anatomy of a General Learning Mechanism

In this article we describe an approach to the construction of a general learning mechanism based on chunking in Soar. Chunking is a learning mechanism that acquires rules from goal-based experience. Soar is a general problem-solving architecture with a rulebased memory. In previous work we have demonstrated how the combination of chunking and Soar could acquire search-control knowledge (strate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1987